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1. INTRODUCTION 

Nowadays, wireless sensors are becoming very 
popular because of its wide range of applications in 
remote and physically inaccessible locations. These 
sensors require a compact, low cost, long operating life 
and light weight energy source [1-3]. Usually, fixed 
energy alternatives, such as, batteries and fuel cells are 
used as power source for those sensors. However, 
recharging or replacement of batteries are impractical for 
those applications, that requires sensor to be installed for 
long duration or in inaccessible locations, such as, 
biomedical implants and structure embedded micro 
sensors [4-7]. Batteries also have the limitations of 
environmental hazards and sometimes bulky in compare 
with MEMS device. Energy harvesting from ambient 
energy sources is a possible alternative to batteries. There 
are several environmental energy sources, such as- 
thermal, solar, acoustic noise, wind and vibration [8-11]. 
Vibration is more attractive, since it is inherent in nature 
[6, 12].    

In this study, we focused on designing an AA size 
electromagnetic energy harvester. Several studies have 
already reported related to AA size transducers. For 
example, in [13-14], the authors proposed an AA size 
energy harvester by using spring mass system, which are 
capable of producing maximum 120 µW and 830 µW 
power at 70.5 Hz and 100 Hz resonance frequency. 
Recently, S. Korla et al. proposed same size generator 
using piezoelectric transduction technique, which can 
generate 625 µW of power at 50 Hz resonance frequency 
[15]. However, the resonance frequency of those 
harvesters is very high. On the other hand, ambient 
vibration frequency is very low (1-10 Hz) [16]. Some 
researches have been also conducted to reduce the 

operating frequency of harvesters. For example, using 
frequency up conversion technique, it is possible to 
operate the transducer at 25 Hz resonance frequency [17]. 
However, it can generate only 3.79 µW maximum power. 

Therefore, this paper presents, design and analysis of 
an electromagnetic energy harvester by using magnetic 
spring. Magnetic spring type generator has the 
advantages of low resonance frequency, simple 
construction process and easy vibration under off 
resonance conditions [18-19].                   
 

2. DESIGN 
 
2.1 Generator structure 
     A schematic diagram of a magnetic spring generator is 
shown in Fig. 1. A moving magnet inserted into a hollow 
plastic straw. Then, two opposite pole fixed magnets has   
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 Fig. 1: Schematic diagram of the magnetic spring 
transducer 
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been placed vertically in such a way that, all the facing 
surface of magnets have same pole. A coil of enamel 
coated copper wire is wrapped horizontally around the 
outer casing of plastic straw. When an external force 
applied to the structure, the middle magnet start to 
oscillate due to magnetic repulsion of two fixed magnets 
and hence AC voltage will be induced in the coil.  
 
2.2 Modeling of the generator 

The proposed energy harvester can be described by a 
spring mass system. Assume that, a sinusoidal force F is 
applied to the system. By applying Newton’s second law 
to the moving magnet, we can write: 

 

          
2

2 damping spring
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Where, m is the moving magnet mass, x is the relative 
displacement between moving magnet and generator 
housing, and P is the gravitational force.  
    Equation (1) can be written as: 
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Where, Dp and De are the parasitic damping coefficient 
and electromagnetic damping coefficient respectively. k 
is the spring constant with the following form: 
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Where, FT is the force between top and moving magnet 
and FB is the force between bottom and moving magnet.  
Therefore, the solution of displacement of Eq. (3) [20]  
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The average generated power at resonance (i.e., 
w=wn=√(k/m)) can be written as: 
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3. RESULT AND DISCUSSION 

The generator structure is modeled by using ANSYS 
2D axi-symmetric finite element analysis as shown in Fig. 
2. The simulation parameters are given in Table 1.   

When moving magnet height is less than coil width, 
the response (i.e., flux density vs. distance) shows some 
nonlinearity towards the ends [18]. The nonlinearity can 
be reduced by increasing moving magnet height, since; 

increase of moving magnet mass reduces linear stiffness. 
  

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

   Table 1: Generator materials and simulation parameters 
 

Parameter Value/material 

Dimension of housing (DH x HH) 14x48 mm2 

Inner cylinder’s material Plastic straw 

Inner cylinder’s dimension 7x46 mm2 

Magnet’s material NdFeB (N35) 

Coil’s material Copper 

Coil position 0 (Center) 

Coil width (CW) 10 mm 

Coil thickness 0.1 mm 

Coil resistance 96.502 Ω 

Coil-magnet gap (G) 1 mm 

Distance between fixed magnets (HC) 42 mm 

Displacement (y) 0.5 mm 

 

 Fig. 4: Flux density across coil surface vs. position  
of moving magnet 

 Fig. 2: Axi-symmetric finite element simulation 
showing flux lines 
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coefficient. As observed from Fig. 3, the response shows 
more linearity with the increase of moving magnet size.  
    If moving magnet size increases, flux density across 
the coil also increases, however, displacement speed of 
moving magnet will decreases [16, 19]. Therefore, to 
optimize the output voltage, a trade off is required 
between flux density and moving magnet displacement 
speed. As it is shown in Fig. 4, a maximum voltage of 
10.4 V obtained for 6x14 mm moving magnet size with a 
resonance frequency of 8.8 Hz.  
    Similarly, for the optimization of fixed magnet at top 
and bottom end of the tube, a trade off is required 
between flux density and mass displacement [21-22]. As 
observed from Fig. 5, when 1x1 mm size magnet is used 
at top and bottom, the device operates at lowest 
resonance frequency (7.8 Hz). However, at this time, 
output voltage is low (9.67 V). An optimum voltage of 
11.4 V is obtained, when 1x1 mm and 2x2 mm size 
magnet is used at top and bottom respectively. 
    Figure 6 shows, no load voltage for different coil 
widths. As it is observed, smaller coil width (5mm) is 
giving more output voltage (13.88 V), thus, there is less 
possibility of flux enclosing than a larger coil width. The 
flux lines totally enclosed by the coil do not have any  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
contribution in the resultant output voltage, because, 
total flux linkage for those flux lines with the coil is 
constant [23].  
    PSpice simulation software is used to find out the 
maximum power at optimum load condition. A full wave 
rectifier is made by using HITACHI HRP22 Silicon 
Schottky barrier diodes (Vf = 0.35 V). Three 1000 µF, 10 
V SAMWAH SG series capacitors are used in parallel 
with the load resistance to reduce the ripple in the output. 
As it is observed from Fig. 4, a maximum power of 53.5 
mW is obtained at 360 Ω load resistance. The optimized 
parameters of the proposed AA size electromagnetic 
energy harvester are given Table 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 4: No load voltage vs. resonance frequency 
for different moving magnet size 

 Fig. 5: No load voltage and frequency vs. top (T) 
and bottom (B) magnet size 

 Fig. 4: No load voltage vs. coil width 

 Fig. 4: Measured output power vs. load resistance 
at resonance condition  

  Table 2: Optimized parameters of generator  
 

Parameter Dimension 

Moving magnet size (mm2) 6x14 

Top magnets size (mm2) 1x1 

Bottom magnets size (mm2) 2x2 

Coil width (mm)  5 

Load resistance (Ω) 360 

Maximum power (mW) 53.5 
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5. CONCLUSION 
This paper has demonstrated an AA size electro- 

magnetic transducer by optimizing moving magnet size, 
fixed magnets size and coil width. Moreover, the 
nonlinear behavior of the generator has been reduced by 
increasing moving magnet height in comparison with 
coil width. The optimized energy harvester can produce 
53.5 mW power at 360 Ω load resistance. The main 
advantages of the proposed magnetic spring type energy 
harvester are simple operation, lower cost and long 
operating life. Furthermore, the generator can operate at 
8.1 Hz resonance frequency. Therefore, proposed 
generator is very useful for supplying power for health 
care and environmental monitoring sensor systems.              
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