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1. Introduction 
Beyond traditional pick and place operations, modern 

industrial robots are used to perform variety of tasks in 

manufacturing industries. For performing such tasks, 

integration of tools to the robot end-effector changes the 

kinematics and dynamics of the system significantly. 

Simulation of robot motion along with additional tools is 

essential to ensure a flawless execution of a planned task.   

High level cognitive function for reasoning, action and 

perceived changes in an unknown environment requires 

both qualitative [1, 2] and quantitative model of a 

geometry based system. Lin and Lewis [3] used a 

qualitative approach for representation of a planar robot 

kinematics. Lin and Lewis [4] generated kinematic and 

dynamic equations symbolically based on Lagrange 

principle. Development of a general approach for 

qualitative representation of system is still an open 

problem. While qualitative models are necessary in a 

high level decision making process involving external 

data, quantitative models are suitable for localized 

functions, e.g. path planning, motion analysis, design and 

control of robotic system. Combined model utilizing 

both qualitative and quantitative behavior of a system 

may serve as a basis for general application of a complex 

system. Steinbaur and Wotawa [5] proposed a combined 

framework of both groups for fault detection of a mobile 

robotic system. In this paper we propose a quantitative 

kinematic scheme for spatial representation of an open 

chain mechanical system for efficient industrial 

applications.  

Various methods [6, 7, 8, 9] for kinematic modeling 

of an open chain mechanical systems has been used by 

researchers. Among them Denavit and Hartenberg [6] is 

most commonly utilized for robots which are modeled as 

interconnected rigid links with lower pair joints, each 

having one degree of freedom (translation or rotation). 

The basis of this method is a 4X4 homogeneous 

transformation matrix for each link. But switch of 

end-effector tools requires one to incorporate the changes 

in kinematic structure of the model, which may be a time 

consuming step in an automated manufacturing process. 

In this paper we present an Eulerian Angle based of 

kinematic modeling of an open chain mechanical system 

in which the changing system parameter can be quickly 

generated and utilized for motion planning and control of 

the system. In this method, the degrees of freedom for 

each kinematic link have been maximized by using the 

modified Eulerian angle [10]. The kinematics of each 

link is formulated based on three translational and three 

rotational parameters. This model is suitable for solving 

the forward kinematic problem i.e. to predict the overall 

motion of a system and the end-effector based on the 
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input motion of the actuating links.  Generally, there is no 

unique solution of the inverse kinematic problem of a 

redundant robotic system. Therefore a solution method 

requires appropriate constraints be imposed on the 

system prior to optimizing an objective function.  

 

2. Kinematic and dynamic model 

Kinematical model of an n degree of freedom robot 

based on the modified Eulerian angle [5] is presented 

below (Figure 1). It’s assumed that the robot links are 

perfectly rigid and there is no compliance at the link 

joints. The general system under consideration consists 

of m links with 6m independent parameters; out of which 

n are time varying generalized coordinates and the rest 

are constants defining the kinematic nature of the system.  

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1. 

Modified Eulerian angle parameters 

 

In general the ith link between the ith and (i+1)th 

joint is represented by the Cartesian joint coordinates Lxi, 

Lyi and Lzi. The modified Eulerian angles and 

(nutation, precession and spin angles) of the ith 

reference frame with respect to the (i-1)th reference 

frame represent the orientation of the ith link. 

Mathematically, a vector e i corresponding to the ith 

reference frame is related to that of the (i-1)th reference 

frame by:  
e

i = T i  e i-1                       (1) 

Here, T i  is a 3X3 orthogonal matrix representing the 

transformation from the ith reference frame to the (i-1)th 

reference frame and is given by:  
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where, C1 = Cos (i), S2 = Sin ), C2-3 = Cos i) etc.  

Based on these transformation matrices, the position 

of the ith joint with respect to the fixed reference frame 

(XYZ) at the base of the robot is given by:  
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where,      (4) 

 

The orientation of the ith link with respect to the fixed 

inertial reference at the base of the robot is given by 


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 If  i = 0 or 180 then the equation (7) reduces to  

 

 

 

Using i=m in the foregoing equations, we may 

determine the position and orientation of a robot 

end-effector or tool tip with a total of m links.  

The linear velocity and acceleration of a joint are 

obtained by differentiating the above equations with 

respect to time as 
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Using these kinematical equations and the 

Lagrangian formulation for a system with rigid links and 

joint compliances, the dynamic model for an m link 

system with n degrees of freedom is represented by: 

kckkkkkkk
FqGqqHqKqcqqM  )(),()( 

 (8) 

k = 1, 2, 3, … 2n.             

Where,  

M= Inertia matrix 

C = Viscous damping matrix 

 K = Stiffness matrix 

 H = Centrifugal and Coriolis vector 

 G = Gravitational force vector 

 F = Generalized no conservative force vector 

 q = Generalized coordinate 

 

Using appropriate modified Eulerian angle 

parameters of the system and this formulation, 

mathematical model of any industrial robot along with 

the end-effector tool can be generated. After 

identification of the system parameters, the kinematical 

model of a system is generated by using a programming 

code. For an industrial robotic system, these parameters 

are Lxi, Lyi, Lziand i for each of the links. 

Similarly the elements of the dynamic parameter 

matrices M, C, K, H, G, F need to identified prior to 

generation of the dynamic equations of motion.  

 

3. Kinematics of PUMA 560 robot 
Based on the equations developed any industrial robot 

model can be quickly reconfigured and used for task 

planning. A variety of robotic systems were simulated 

based on this technique. For brevity the example of 

PUMA 560 robot is shown below. After identifying the 

parameters of the system, the robot model can be 

represented by four kinematic links with six independent 

joint angles. The parameters are:  

1 =-q1,   1 =     = q2,  

Lx1 = 0,  Ly1 = a2,  Lz1 = d3  
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 =,   2 =    = q3,  

Lx2 =-d4, Ly2 = -a3,  Lz2 = 0 

 =-q4,  3 = ,  3 = 0,  

Lx3 = 0,  Ly3 = 0,  Lz3 = 0 

4 =-q5,  4 =  4 = q6,  

Lx4 = 0,  Ly4 = 0,  Lz4 = 0 

 

The physical system and its modified Eulerian angle 

representation are shown in figure 2 and 3 respectively.  

 

 

 

 

 

 

 

Figure 2. PUMA 560 robot arm parameters 

 

 

 

 

 

 

 

Figure 3. Modified Eulerian angle representation of 

PUMA 560 robot 

 

4. Kinematics of FANUC S robots 
Based on the equations (1) – (8) any industrial robot 

model can be quickly reconfigured as the system 

parameters changes and used for task planning and 

motion control. A variety of robotic systems were 

simulated using this technique. 

Here we are presenting the example of FANUC S 

industrial casting robot[11]. After identifying the 

kinematic parameters of the system, the robot model is 

represented by four kinematic links with six independent 

joint angles. The parameters are:  

 

1 =-q1,    1 = q2,   Lx1 = 0, Ly1 = 750 mm, Lz1 = 0  

 

0,0,= q3,   Lx2 =-0, Ly2 = 900 mm, Lz2 = 0 

 

 =q4,   3 = q5,  Lx3 = 0, Ly3 = 0,            Lz3 = 0 

 

4 =, =q6, Lx4=0, Ly4= 100 mm, Lz4 =100 mm 

 

The physical system and its modified Eulerian angle 

representation are shown in figure 4 and 5 respectively.  

Using the above parameters in equation (2), the 

transformation matrices of the links are: 
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Figure 4. 

FANUC S model robot arm 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. 

Modified Eulerian angle Representation of 

FANUC S robot 

Next using these transformation matrices in equation 

(4), the matrices A1, A2, A3 and A4 are determined. 

The position of the robot end-effector is then 

computed by using these matrices in equation (3).  

The same position may be obtained by using the 
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homogeneous transformation matrices T0
1
 T1

2
 T2

3
 

T3
4
 T4

5 
and T5

6
. The computational complexity of the 

two methods is presented in Table I.  

 

Table I 

NUMBER OF COMPUTATIONS 

 
Modified Eulerian angle method Denavit-Hartenberg 

method 
Operation                Mult.           Add. Operation      Mult.  Add. 
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Total                        117    126                   320        320 

 

The number of multiplication and additions required for 

a single set of forward kinematic computation in the 

forgoing development is only 117and 126 respectively, 

as compared to 320 and 320 that are required using the 

Denavit-Hartenburg method [12]. This amounts to a total 

of 62% reduction in computation for generation of the 

equations of robot end-effector position. In robot control, 

using appropriate programming logic, generally the 

multiplication of sparsely populated matrices is made 

efficient by only considering the nonzero elements of the 

matrices. Even under such circumstances, the 

computation requirement in the proposed method is 45% 

less than the existing method. Therefore, the procedure 

allows for efficient computation and faster robot 

response when such model is used online to 

accommodate the changes in the physical system in an 

automated manufacturing environment.  
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