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1. INTRODUCTION
     Applications of computational fluid dynamics (CFD) 
to the maritime industry continue to grow as this 
advanced technology takes advantage of the increasing 
speed of computers. In the last two decades, different 
areas of  incompressible flow modeling including grid 
generation techniques, solution algorithms and 
turbulence modeling, and computer hardware 
capabilities have witnessed tremendous development.  In
view of these developments, computational fluid 
dynamics (CFD) can offer a cost-effective solution to 
many problems in underwater bodies. However, effective 
utilization of CFD for marine hydrodynamics depends on 
proper selection of turbulence model, grid generation and 
boundary resolution.   
     Turbulence modeling is still a necessity as even with 
the emergence of high performance computing since 
analysis of complex flows by direct numerical 
simulations (DNS) is untenable.  The peer approach, the 
large-Eddy simulation (LES), still remains expensive.  
Hence, simulation of underwater hydrodynamics 
continues to be based on the  solution of the 
Reynolds-averaged Navier-Stokes (RANS) equations. 
Various researchers  used turbulence modeling to 
simulate flow around axisymmetric bodies since late 
seventies.  Patel and Chen [1] made an extensive review 
of the simulation of flow past axisymmeric bodies. Choi 
and Chen [2] gave calculation method for the solution of 
RANS equation, together with k-ε turbulence model.  
Sarkar et al. [3] used a low-Re k-ε model of Lam and 
Bremhorst [4] for simulation of flow past underwater 
bodies.  
     A considerable amount of research work has been 

published on flow over a sphere. The basic structure  of    
the flow past a sphere has been experimentally 
investigated using a variety of approaches, including 
flow visualization by Achenbach [5], Taneda [6], Bakic 
[7] etc. Recent time-accurate computations of laminar 
and turbulent flow around spheres using different 
methods are reported by many researchers, among them 
the work of Gregory [8], Kalro [9] and Sun and Chwang 
[10] are remarkable. In this present study, 
Spalart-Allmaras (S-A) and shear stress transport (SST) 
k-ω turbulence models are used to simulate fully 
turbulent flow over underwater sphere.  

2. THEORETICAL FORMULATION 
     CFD is based on the fundamental governing 

equations of fluid dynamics. The Equations are 
continuity, momentum, and energy equations. These 
equations speak physics. They are the mathematical 
statements of three fundamental physical principles upon 
which all of fluid dynamics is based: 

1. Mass is conserved. 
2. Newton's second law, F = ma. 
3. Energy is conserved.

2.1 Conservation laws
     If we restrict our attention to single-phase fluids, the 
law of mass conservation expresses the fact that mass 
cannot be created in such a fluid system, nor can 
disappear from it.
     At a point on the control surface, the flow velocity is

, the unit normal vector is and dS denotes an-
elemental surface area. For the time rate of change of the 
total mass inside the finite volume Ω. The conserved 
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quantity in this case is the density , surface area ), 
by convection always points out of the control volume, 
we speak of Inflow if the product ( ) is negative, and 
of outflow if it is positive and hence the mass flow leaves 
the control volume. There are no volume or surface 
sources present.
     Hence integral form of the continuity equation - the 
conservation law of mass can be represent as:

  +                           (2.1)   

                       
     The momentum equation by recalling the particular 
form of Newton's second law which states that the 
variation of momentum  is caused by the net force acting 
on an mass element. For the momentum of an 
infinitesimally small portion of the control volume Ω we 
have- ρ dΩ which is the variation in time of momentum.

The convective flux tensor , which 
describes the transfer of momentum across the boundary 
of the control volume, consists in the Cartesian 
coordinate system of the following three components-
X-component: pu , 
Y-component: pv , 
Z-component: pw .
     The diffusive flux is zero, since there is no diffusion 
of momentum possible for a fluid at rest. We can identify 
two kinds of forces acting on the control volume:

1. External volume or body forces, which act 
directly on the mass of the volume. 

2. Surface forces, which act directly on the 
surface of the control volume.

     Considering all of these the momentum equation can 
be represent as :

  + = 

   dS +  . ) dS              (2.2)

     Equation 2.2 is called the momentum equation.
Where, body force per unit volume, denoted as- ρ e,

viscous stress tensor as . Here, momentum conservation 
inside an arbitrary control volume R which is fixed in 
space.
     The energy equation can be represent as-

+ =

+ )dS 

+  . ) . dS                                                       (2.3)

     Here, we will denote the heat sources - the time rate of 
heat transfer per unit mass - as h. Together with the rate 
of work done by the body forces e, total energy E, 
temperature gradient  . 
   

3. STANDARD K - EPSILON TURBULENCE 
MODEL

     At high Reynolds numbers [11] the rate of dissipation 

of kinetic energy is equal to the viscosity multiplied by 

the fluctuating vorticity. An exact transport equation for 
the fluctuating vorticity, and thus the dissipation rate, can 
be derived from the Navier Stokes equation. The k -
epsilon model consists of the turbulent kinetic energy 
equation-

+ div ( ) = div + σ                                                      

                                                                                   (3.1)
And the dissipation rate (ε) equation-

+ div ( ) = div + ρ G -

ρ                                                                         (3.2)

    Where G represents the turbulent generation rate –
G=2

                                                                                   (3.3)                 
     Model constants are-

= 1.3

4. BOUNDARY CONDITIONS
     The bottom and top boundary of the domain is 
modeled as an axis boundary. Additionally, the left 
boundary of the domain are modeled as ‘velocity inlet’, 
the right boundary is modeled as an ‘outflow boundary’, 
and the surface of the body itself is modeled as a ‘wall’.  

5. METHODOLOGY
     Grid construction, the computational domain for 
sphere model is divided into two regions: the boundary 
layer region and the free stream region. Dividing the 
domain in this fashion is a common practice in problems 
where the effects of the viscous boundary layer that 
forms on the body are expected to significantly affect the 
flow field and where enhanced grid resolution  in the 
vicinity of the boundary layer is important. The boundary 
layers are attached  to the spheres and the direction of the 
boundary layer grids is defined such that the grids 
extended into the interior of the domains. Based on prior 
experience with numerical simulations involving 
boundary layers and the expected growth of the boundary 
layer meridionally along the sphere, both boundary layer 
meshes are approximately 3 cm in height. Increasing the 
number of rows in the boundary layer meshes only 
served to vary cell density, and did not change the total 
height of the mesh. Finally, the growth factors are chosen 
to increase the resolution of the meshes at the base of the 
boundary layers (where flow parameter gradients are 
largest) while still maintaining high grid resolution, low 
cell skewness at the top of the boundary layers, and a 
total boundary layer mesh thickness of approximately 3 
cm. Low skewness is important to ensure similar cell 
proportions between outer boundary layer cells and 
neighboring free stream region cells. The boundary layer 
grid parameters for the sphere models are shown in 
Table .1 If the growth factor is not listed in the following 
tables, it would be considered as unity.  
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Table 1: Boundary layer parameters of sphere grids.

Meridional 
node

count on 
sphere

First row 
thickness 

in
boundary 

layer

Boundary 
layer

growth 
factor

Number of 
rows

in 
boundary 

layer
120 0.0001 1.24 20

Table 2. The node spacing of sphere on the edges of the 
domains for each edge node distribution.  

Node
on

FS 1

Growth
factor on

FS 1

Node on
FS 2

50 0.9 12
FS = Front section; 

Table 3. The node spacing of sphere on the edges of the 
domains for each edge node distribution.  

Node on 
RS 1

Growth 
factor on 

RS 1

Node on
RS 2

Growth 
factor on 

RS 2

Node 
count on 

TB
50  1.111  12  20  40

RS = Rear section; TB = Top boundary;

Table 4: Sphere boundary node spacing distributions.

Front face Middle face
No. of 
Nodes 

Growth
factor

No. of 
Nodes

Growth 
factor(both
direction)

45  1.04  80  1.02  

Table 5: Sphere boundary node spacing distributions. 

Rear face Normal to the axis

No. of 
Nodes 

Growth
factor

No. of 
Nodes 

Growth
factor

75  1.05  90  1.05

     Grid construction, the computational domain is 
divided into three faces: Middle face, Front face and Rear 
face. At first, the edges of the faces are meshed, and then, 
using the edge meshes, the interiors of the faces are 
meshed. The node spacing on the edges of the domain for 
each node distribution is given in the Table 4 and Table 5. 
Once the edges are meshed, the interior of the domains 
need to be meshed using automatic face mesh generation 
scheme. The meshing scheme that is chosen is pave 
meshing scheme. The tri-pave scheme creates an 
unstructured grid of mesh elements, which is particularly 
desirable for its applicability to a wide range of face 
geometries, its ability to deal with irregularly shaped 
interiors, and its ease of use. There is no restriction on 
mesh node spacing imposed by the pave scheme since 
only triangular face elements are used. More cells are 
constructed near the surface of the sphere to tackle the 

high velocity gradient in the boundary layer region of the 
viscous flow. Fig.1 shows the grid for the sphere, which 
is symmetric about the axis of rotation. A commercial 
software GAMBIT is used for grid generation.

Fig.1: Sphere grid with boundary conditions.

     In Fig-1,the bottom and top boundary of the domain is 
modeled as an axis boundary. Additionally, the left 
boundary of the domain are modeled as ‘velocity inlet’, 
the right boundary is modeled as an ‘outflow boundary’, 
and the surface of the body itself is modeled as a ‘wall’.  

6. RESULTS AND DISCUSSION
     Figure-1 shows the grid that I’ve generated to carried 
out computational study. The size of the grid is 60*20*30 
in r, �, � direction respectively. There are 6874 cells, 
10436 faces, 3562 nodes, one partition in the grid and 
tri-pave mesh system is used for the grid generation.
Here we have carried out two types of simulation. One 
effect of  diameter change over a sphere when velocity is 
fixed. Another  one effect of velocity change on a fixed 
diameter. 
     Figure-2 shows the velocity vector for a diameter of 
4cm and Re no-1.09533e6 .It shows the characteristics 
features like stagnation region, flow separation point and 
the recirculation region. It is seen that separation occurs 
at an angle of 1.5769 radian. Here different color and size 
of arrow shows the magnitude of velocity vector. At the 
point of forward stagnation point and after the flow past 
the sphere velocity is less than other place which is 
shown by blue color. Red color shows the maximum 
velocity magnitude and yellow for medium velocity 
magnitude.
     We have seen the effect of diameter change for four 
different diameters.For a diameter of 6cm and Re 
no1.64300e6.It is seen that separation occurs at angle of 
1.5069 radian for a diameter of 8cm and Re 
no-2.19068e6. Here separation occurs at angle of 1.1817 
radian, for a diameter of 10cm and Re no-2.73834e6. 
Here separation occurs at angle of 1.1325 radian. To see 
how separation occurs for a fixed diameter and varying 
velocity we have seen the effect for four different 
velocity.
    We have also seen the effect of velocity change for a 
fixed diameters For a diameter of 4cm, v=6 m/s and Re 
no-1.64300e6, separation occurs at angle of 1.5700 
radian for v=6 m/s, for a diameter of 4cm, v=8 m/s and 
Re no-2.19067e6. Here Separation occurs at angle of 
1.5048 radian ,for a diameter of 4cm, v=10 m/s and Re 
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no-2.73834e6.It is seen that separation occurs at an angle 
of 1.2021 radian, for a diameter 4cm, v=12m/s and Re 
no-3.28601e6. It is seen that separation occurs at an 
angle of 1.1269 radian .
     Figure-3 shows the separation point of the sphere. For 
different velocity and different diameter of sphere 
separation point will vary. 
     Figure-4 shows that the distribution of pressure 
coefficients for different diameters on different positions 
of the sphere. The pressure co-efficient is positive at the 
stagnation point and decreases with the increase of 
angular position from the forward stagnation point. Near 
the stagnation region the slope of the curves are higher 
for larger diameters of the sphere that means the flow 
separation occurs earlier in case of larger diameter of the 
sphere.
     Figure-5 shows the distribution of pressure 
co-efficient on different position of the sphere for 
different velocities. At the stagnation point pressure is 
positive in all cases, with the increase of velocity, the 
magnitude of maximum pressure (Negative) decreases. 
At the stagnation point the pressure is higher (Negative) 
for lower velocity that means in the pressure recovery 
region the pressure recovers at a higher rate for higher 
velocity.
     From figure-6 it is seen that skin friction co-efficient 
increases with the increase of angular position from the 
forward stagnation point for different diameter of sphere 
and at a fixed velocity of 4 m/s. After the separation point 
skin friction co-efficient decreases. At the rear stagnation 
point shin friction coefficient is lower. At the inflection 
point skin friction co-efficient is higher. 
     From figure-7 it is seen that skin friction co-efficient 
increases with the increase of angular position from the 
forward stagnation point for different velocity and on a 
sphere diameter of 4cm and at a fixed velocity of 4 m/s. 
After the separation point skin friction co-efficient 
decreases. At the rear stagnation point shin friction 
coefficient is lower. At the inflection point skin friction 
co-efficient is higher. 

Fig-2: Velocity magnitude for a diameter of 4cm and Re 
no-1.09533e6.

Fig. 3 Velocity vector showing the separation point.

Fig-4:  Pressure Co-efficient Vs Angle in radian fo
different diameter and v=4m/s.

Fig-5:  Pressure Co-efficient Vs Angle in radian for 
different velocity and d=4cm.

Fig-6:  Skin Co-efficient Vs Angle in radian for different 
diameter and v=4m/s.
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Fig-7:  Skin Co-efficient Vs Angle in radian for different 
velocity and d=4cm.

7. CONCLUSION
     The flow around a sphere in infinite flow has the 
characteristic tendency of flow separation along with 
coanda effect making the flow adhere to the surface and 
delaying the flow separation. The adverse pressure 
gradient and coanda effect depend upon the magnitude of 
turbulence intensity and magnitude of approach velocity. 
For fully developed turbulent velocity profile at 
approach, the flow adheres to the sphere due to the 
coanda effect. These features have significant influence 
on skin friction and pressure distribution.
     The optimum performance of fluid machinery, such as 
fans, turbines, pumps, compressors etc. can only be 
predicted with accurate understanding of flow of 
separation. By experimental study we have to face lots of 
problem to find separation point. Computational Fluid 
Mechanics has become popular to find separation point 
as well as any simulation of Fluid Mechanics.
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