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1. INTRODUCTION 
   Tungsten oxide (WO3) is an n-type semiconductor and 
has been investigated extensively owing to their 
promising physical and chemical properties [ 1]. WO3 
shows good optical properties and proper chemical 
stability; that is, Eg in the range of 2.5–2.8 eV (λ of 
400–450 nm) is very suitable for the energy region of 
visible light [2, 3]. With outstanding electrochromic, 
optochromic, and gaschromic properties, tungsten 
ooxides have been used to construct flat panel displays, 
photoelectrochromic ‘smart’ windows, optical 
modulation devices, wire-read-erase optical devices, 
catalysts [4],  gas sensors [5-7] humidity and temperature 
sensors, and so forth [8, 9].  For the fabrication of many 
of such devices and increasing their efficiencies, 
nanostructured WO3 films are required to be “thick and 
porous” enough to provide sufficient volume for 
producing high interaction areas. Besides, synthesis and 
assembly of “specific crystallographic phase” can further 
improve the characteristics of WO3 [10]. The synthesis of 
one-dimensional (1D) nanostructures and the assembly 
of these nano meter-scale building blocks to form 
ordered superstructures or complex functional 
architectures offer great opportunities for exploring their 
novel properties and for the fabrication of nanodevices 
[11]. Thus for several techniques for the preparation of 
1D tungsten oxide nanostructured films have been 
developed [1]. 
 

The deposition of WO3 nanostructured films by 
facing targets sputtering technique is the newest 
fabrication method of thin films, with lower particle 
bombardment compared with the RF sputtering and DC 
sputtering, because of its special target arrangement. The 

FTS apparatus are very effective systems for depositing 
high quality thin films because plasma perfectly confines 
by the magnetic field between two targets. The thin films 
can be deposited in non-bombardment by electron 
(“damage free”) conditions [12-14].   

 
In this work, nanostructured WO3 films have been 

deposited by using FTS method with sputtering pressure 
of 0.1 Pa and oxygen-annealed at 450C. The structural, 
surface morphological properties of nanostructured WO3 
films have been investigated and discussed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Facing Target Sputtering system in our laboratory. 

 
2. EXPERIMENTAL SECTION 

Figure 1 shows the FTS systems in our laboratory for 
preparing WO3 thin layer. In this FTS system, the 
distance between the target-to-target, and the center of 
the targets' to the substrate were 100 mm and 50 mm, 
respectively. W rectangular plates (having 115 x 75 mm, 
thickness of 3 mm and purity of 99.95 %) were used as 
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targets. The chamber was evacuated to a vacuum level of 
7×10−4 Pa. The WO3 nanoparticles were deposited 
reactively for 2hrs at DC input power of 200 W with 
sputtering pressure of 0.1 Pa and a fixed Ar to O2 gas 
ratio (GR) of 6:4 [15]. As-deposited WO3 nanoparticles 
are annealing in a muffle furnace (TMF5, Thomas) under 
oxygen environment at 450C for 2hrs, because 
as-deposited films are the amorphous structure. The 
thickness (2 m) of the WO3 films was determined with a 
mechanical surface roughness meter (SURFCOM 
Accretech, 1500 DX) using the step between film and 
substrate. The crystal structures of the TiO2 films were 
determined by grazing incident X-ray diffraction 
(GIXRD) spectra (SHIMADZU XRD-6000) with 
Cu-K line. The data were recorded from 2 values 20 
to 80 with a step of 0.02. For GIXRD measurement 
incident angle was fixed at 0.45. The optical properties 
of the films were measured with JASCO V-550 
spectrophotometer at room temperature within the wave 
length range 300-800 nm. The surface morphologies 
were studied using field emission scanning electron 
microscope (FE-SEM) with Model: JEOL, FE-SEM 
6700F. 

10 15 20 25 30 35 40 45 50 55 60
0

300

600

900

1200

1500

(1
14

)
(0

04
)

(1
21

)(2
00

)

(0
02

)

In
te

ns
ity

 (
a.

u.
)

Diffraction angle, 2 (deg.)

 As-deposited WO
3

 Annealed WO
3

(0
20

)

 
Fig.2. The GIXRD patterns of as-deposited and annealed 

WO3 thin films 
 

3. RESULTS AND DISCUSSIONS 
     Figure 2 shows the GIXRD patterns of as-deposited 
and annealed WO3 thin film prepared on glass sample. 
The GIXRD patterns of the as-deposited WO3 films are 
found to be amorphous in nature, but crystalline films 
were obtained when the film is annealed at high 
temperatures such as 450 °C in oxygen environment. The 
lines located at 23.12°, 23.6°, 24.28°, 28.80°, 47.24°, and 
50.52° are assigned to the lattice plane reflection of 
triclinic WO3 phase with lattice parameters a =0.7312 
nm, b=0.7525 nm, and c=0.7689 nm (PC-PDF No. 
83-0948). However, triclinic and monoclinic diffraction 
peaks almost overlap for many 2 values and it is 
difficult to discriminate between these two phases. On 
the other hand, according to the phase diagram, the 
monoclinic and triclinic structures are the most common 
and coexist in WO3 at temperatures lower than 500 °C. 
[16]. The crystallite size of the particles has been 
estimated from the Debye–Scherrer's equation using the 
GIXRD line broadening as follows [17]: 

 cos94.0D , where D is the crystallite size, λ is 

the wavelength of the X-ray radiation (Cu Kα=0.15406 
nm), θ is the diffraction angle and β is the FWHM. A 

finite diffraction peak has been chosen for calculation of 
crystallite size. The diffraction peak (002) has been 
chosen for calculation. The derived grain size is 13.9 nm 
for the annealed WO3 thin films. 

 
Figure 3 shows the transmittance spectra as a 

function of wavelength (300 - 800 nm) for as-deposited 
and annealed WO3 thin films, prepared in same 
conditions. The spectra of as-deposited WO3 films show 
the usual interference pattern in the range of low 
absorption with a sharp fall of transmittance at the band 
edge. The annealed WO3 thin film is yellowish in color. 
The annealed WO3 films have less interference. It has 
been observed that the transmittance edge shows the 
red-shift with the annealed WO3 films. It is may be due to 
the high crystallinity, observed within the sample of 
investigation. The average transmittance in the visible 
region varies from 79% to 61% with as-deposited and 
annealed WO3 films, respectively.  
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Fig.3. The optical transmittance spectra of as-deposited 
and annealed WO3 thin films. 

1.5 2.0 2.5 3.0 3.5 4.0
0

1

2

3

4

5

6

3.07


h


 x1
03  (

eV
1/

2 m
-1

/2
)

Photon energy (eV)

 As-deposited WO
3

 Annealed WO
3

2.81

 
Fig.4. (αhυ)1/2 versus energy for TiO2 thin films, 

deposited with different puttering powers: 200 W, 300 W, 
400 W and 500 W. 

 
We assume an indirect transition between the top of 

the valence band and the bottom of the conduction band 
in order to estimate the optical band gap (Eg) of the films 
using the relation [18]: (hν)  A(hν–Eg)

2, where,  is 
absorption coefficient, A is the edge width parameter and 
hν is the photon energy. Figure 3 shows the plots of 
(αhν)1/2 versus the photon energy of the films grown at 
different sputtering powers. The optical band gap of the 
films was determined from the extrapolation of the linear 
plots of (αhν)1/2 versus hν at α=0. The optical band gap of 
the films is 3.07 and 2.81 eV for as-deposited and 
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