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Abstract- Though Packing objects is a classical  mathematical problems but there are a large number of practical 

applications in several fields. Here we consider the problem of packing equal radii circles into minimized circular 

container. For the solution approach, we consider,  Multi-search approach  named  Population  Basin Hopping 

search approach rather than monotonic heuristic search approach. To measure the fitness of the solutions among 

the individuals   we also present two tools called  dissimilarity measures. Extensive computational experiments 

have been performed to analyze the problem as well as for choosing an appropriate way the parameter values for 

the proposed heuristic approaches. Several improvements with respect to the best results reported in the literature 

have been detected by the proposed approach. 
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1. INTRODUCTION 

The problem of optimally placing N non overlapping and 

possibly of different size objects belonging to R
d
 within a 

smallest container is a classical mathematical problem and 

has been widely considered in the literature. Besides being 

interesting because of their complexity, the attractiveness of 

packing problems is also motivated by a very broad range 

of practical applications. Packing  problems arise in many 

scientific and engineering fields including  production and 

packing for the textile, apparel, naval, automobile, 

aerospace and food industries, news paper, web pages 

design, in particular, to problems related to cutting and 

packing [Dyckhoff, 1990]. They are bottleneck problems in 

Computer Aided Design (CAD) and Computer Aided 

Manufacturing (CAM) where design’s plans are to be 

generated for industrial plants, electronic modules, nuclear 

and thermal plants, etc. In particular, we consider in this 

paper, the Packing Equal Radii  Circles in a Circular 

Container (PERCCC) problems. The PERCCC problems 

can be described by the several equivalent problems 

[Dyckhoff, 1990]. One of the settings is given bellow: 

 

Problem: To find the minimum circular container radius Dn 

which contains n non-overlapping circles of radius one. 

Mathematically,  
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This formulation has 2n + 1 variables, one of which is the 

radius r of the circular container, equation (1); 2n variables 

for the coordinates of the n circles (note that the center of 

the container is assumed without loss of generality to be the 

origin). Equation (2) states that any circle Ci of radius one 

is totally contained within container C. There are n of these 

constraints, one for each circle Ci. While constraints (3) 

force circles Ci and Cj not to overlap. There are n(n − 1)/2 

of these non overlap constraints. Equation (4) provides a 

positive lower bound for the radius of the containing circle. 

It substitutes the non-negativity constraint whose 

elimination from the model makes PERCCC unbounded. 

Although the objective (equation (1)) is linear and 

constraints (2) define a convex region, whereas constraints 

(3) are non convex (and, in particular, they correspond to 

reverse-convex constraints). It is pretty easy to see that, 

because of the non convexity, this problem is extremely 

hard to solve; even local optimization, in presence of 

reverse-convex constraints, becomes a hard task. Indeed, 

there exists no any algorithm that is both rigorous and fast 

Hence researchers are searching for the efficient heuristic 

approximation algorithms to solve the problems. There is a 

long history of solving packing problems in literature. A 

survey about this problem can be found in a recent book 

[Johnson et al. 2007] that has been dedicated to the subject. 

Also history the problem of packing in a circular container 

is relatively recent [Lubachevsky et al. 1997]. Benchmark 

results for the problem of packing equal circles in a 

container whose shape is a square, a circle or an equilateral 

triangle are reported and continuously updated in Specht’s 
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web site [Specht, 2009]. Finally, we also refer to the papers 

[Castillo et al. 2008, Hifi  and Hallah, 2009 ] where a 

detailed survey about methods and applications of packing 

problems can be found.  

There are very few papers considered multi-search based 

approaches for dealing packing problems. Authors [Jain 

and Gea, 1998] use genetic algorithms for solving two-

dimensional packing problems. In [Shahookar and 

Mazumder, 1990], authors also proposed genetic approach 

to standard cell placement using meta-genetic parameter 

optimization.  Evolutionary based heuristic approach  was 

used, in [ Stawowy and Adam 2008], to the one-

dimensional bin packing problem. 

Authors, in [ Grosso, et al., 2009], implements monotonic 

basin hopping (MBH) heuristic approach, which is single 

search approach, for the problem of packing  equal circles 

in a circular container. But when instances are hard  MBH  

approach frequently fail to obtain optimal solution. 

In this paper we investigate a related problem: packing n 

circles with unit radius (equal radii) into a circular 

container. The task is to minimize the radius of the circular 

container such that it contains all the n circles of radius one.  

For solving the problems we will propose an evolutionary 

based algorithm name Population  Basin Hopping (PBH) 

approach. In this algorithm each individual search the 

solution space by MBH approach.  For the presence of 

population, we will introduces a new ingredient called 

dissimilarity measures. This parameter mainly serves as a  

selection mechanism among the individuals like 

evolutionary algorithm. The basic idea is to maintain a 

sufficient dissimilarity gap among the individuals in the 

population in order to explore a wide part of the solution 

space.  In  [Cassioli
 
 et. al , 2010], author proposed several 

dissimilarity measures for the field of Molecular Cluster 

Optimization.  

 

2. PROPOSED POPULATION  BASIN HOPPING 
ALGORITHM 

As the problem is a NP-hard global optimization one, the 

number of local minimizers tends to increase quite quickly 

with the number n of circles. When dealing with global 

optimization problems for NP-hard problem, an obvious 

and simplest single point search approach is the Multistart 

(MS) one. In such an approach we simply start different 

local searches from randomly generated initial points and 

return the best local minimizer.  

However, the rapid increase in the number of local 

minimizers suggests that Multistart can not be an efficient 

method for this problem. One efficient single search 

approach is Monotonic Basin Hopping (MBH) approach 

[Jamali et al.,2009, Leary, 2000]. This approach is quite 

close to Multistart (they are both based on multiple local 

searches and they only differ in the mechanism for the 

generation of the initial points) but at the same time it is 

also dramatically more efficient than Multistart. In the field 

of global optimization, such method has been (to the 

authors’ knowledge) first applied to molecular 

conformation problems (see [Leary, 2000]) under the name 

of Monotonic Basin Hopping (MBH).  

It was experimentally shown  [Jamali, 2009] for the  

problem of PERCCC, when the instance is simple one, 

MBH approach coup the problem efficiently ; but, for the 

hard instances,  MBH often fail to find out optimal solution 

(minimized container).  In the field of Evolutionary 

Computations, it is shown that, for the very hard NP-Hard 

problems, multi-search approaches often able to coup the 

problems.    As MBH approach successfully applied for 

circles packing problems when instance are relatively 

simples, so we will propose a population Basin Hopping 

(PBH) approach, which is multi-search approach,  rather 

than monotonic search to coup the hard instances problems 

as well as other problems. As proposed method will be 

develop upon MBH approach so we would like to present a 

brief description of MBH approach first. Its description is 

rather simple. The main ingredients of the method are: (i) 

Initialization (Init), (ii) local search procedure (LS), (iii) 

perturbation move (PM), (iv) Acceptance Rule (AR) and 

(v) stopping rule (SR). Let operator τ and ξ denote LS and 

PM respectively. Also let f(X) denotes the objective value 

of the configuration X. Then the pseudo code of MBH 

approach is given bellow: 

Monotonic Basin Hopping  

Step 1 :Let X0 be randomly generated initial 

solution  

                      // Initialization procedure 

Step 2: Let X := τ (X0) be a local minimum  

                    // local search procedure 

While SR not satisfied  

       Step 3 : Let Y := ξ (X) 

                   // perturbation procedure 

       Step 4: Let X := τ (Y)  

                   // local search procedure 

       Step 5: If  f (X ' )  < f(X), then X:= X ' 

                  // acceptance rule 

      EndIf  

EndWhile  

Return X  

As we have remarked before that the main difference 

between MS and MBH is the technique of generation of 

initial solution of each LS. We know that, in MS, the initial 

solution of each LS is randomly generated. On the other 

hand in MBH, only the first initial solution X0 is generated 

randomly within large enough region, R
2
reg, and all the other 

subsequence initial solutions of LS are generated by the 

PM, a simple but efficient procedure. Since our problem 

can be viewed as a non-convex one with objective and 

constraint functions continuously differentiable infinitely 

many times. So, any local search method for this kind of 

problems can be employed. However, our past experience 

(see Jamali et al.  2009) suggests that SNOPT [Gill et. al., 

2002] is particularly well suited for these problems. The 

acceptance rule, for updating, is very simple just compare 

the objective values of the existence configuration and 

newly obtained configuration and upload new one if better 

objective value obtain. For the perturbation moves we 

consider Full-Jerk (FJ) perturbation technique (for details it 

is  referred to [Jamali et al. 2009]). 

 

2.1 Population Basin Hopping 
MBH is a single search based algorithms which is able to 

find out the bottom of basin if the  solution space is consist 

of few funnels of attraction. But when the solution space is  

consist of large number of funnel then it is experimentally 

observed that  MBH approach frequently fail to obtain 
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optimal solution. An alternative to MBH is Population 

Basin Hopping, inspired by the Conformational Space 

Annealing algorithm [Lee et al. 1997], in which the single 

path search is substituted by a multiple path search. During 

this search, individuals of the population collaborate with 

each other in order to guarantee diversification of the search 

and to avoid the greediness which might characterize a 

single path search. All components of MBH are present in 

PBH. The new ingredient in PBH is the dissimilarity 

measure D and new parameters are Np (the size of the 

population) and dcut (a threshold dissimilarity value). If we 

denote by S the space of the solutions at which we are 

interested (in PERCCC basically the local minimizers), the 

dissimilarity measure can be defined as the following 

function : 

D : S ×S →R
+
 

which, for a given pair of solutions, quantifies the diversity 

between them. Ideally, given two solutions    X, Y ∈ S, 

D(X, Y ) should be close to zero only if X, Y∈S are very 

“similar” and, in particular, equal to 0 only if they represent 

(modulo symmetries, rotations, translations, numbering of 

circles, and so on) the same solution. We allow the concept 

of similarity to be problem-specific; the only essential 

requirement we impose is that for similarity of a solution X 

∈ S with itself, it must hold that D(X, X) = 0 [Cassioli et 

al.,  2010]. Given the dissimilarity measure, the pseudo-

code for PBH is given as follow: 

Step 1(Init): Let X0 be a set of Np randomly generated 

solutions 

Step 2(LS): Compute X = τ(X0)  

While the stopping rule SR is not satisfied 

Step 3(PM): Compute X
/
i := ζ(Xi) : Xi ∈ X, 

        i = 1, 2, . . .,Np 

Step 4(LS): let Y := τ(X
/
) : X

/
i ∈ X

/
, 

 i = 1, 2, . . .,Np (pert. pop.) 

Sequential Replacement: 

    Repeat Yi ∈ Y, ∀ i = 1, 2, . . .,Np 

Step 5 let Xh ∈ X  ϶ D(Yi,Xh) is minimum 

Step 6 (AR): if D(Yi,Xh) < dcut and  

f(Yi) < f(Xh) then 

set X := X/ {Xh} ∪ {Yi} EndIf 

else if D(Yi,Xh) ≥ dcut then 

select Xs ∈ X  ϶ f(Xs) is maximum, and 

if f(Yi) < f(Xs) then 

set X := X/ {Xs} ∪ {Yi} EndIf 

EndRepeat 

   EndWhile 

Return X 

 

Basically, at each iteration: a set Y of new candidates is 

generated through the application of the perturbation move 

to each individual of the population; each new candidate Yk, 

k = 1, . . .,Np, competes either with the member Xh of the 

current population X most similar to it with respect to the 

dissimilarity measure D (if D(Xh, Yk) ≤ dcut), or with the 

worst member Xs of the population (if D(Xh, Yk) > dcut, i.e., 

Yk is dissimilar enough with respect to all members of the 

current population); if it wins (i.e., if it has a better function 

value), it replaces Xh (or Xs) in the population for the next 

iteration. Note that MBH is, in fact, a special case of PBH 

where Np = 1. There is a trade off between two conflicting 

objectives in choosing Np. We have already outlined above 

the (possible) advantages of PBH: increasing Np increases 

diversification and decreases greediness. On the other hand, 

increasing Np also increases the computational effort per 

iteration. Later, we will discuss appropriate choices for Np. 

The local search procedure and perturbations techniques of 

the PBH approach are the same as those for the MBH 

approach. Each individual is independently perturbed and a 

local search starts at the perturbed point. The real difference 

in PBH is represented by the acceptance rule. A candidate 

replaces the member of the population with which it 

competes only if it has a better function value as in MBH, 

but the member with which it competes is not necessarily 

(and, in fact, often it is not) the member of the population 

whose perturbation led to the candidate. Formally, a 

candidate Yi does not necessarily compete with its “father” 

Xi.. This means that Yi could enter the new population even 

if f(Yi) > f(Xi) (a backtracking move which is not allowed in 

MBH), but also that Yi might not enter the new population 

even if f(Yi) < f(Xi) (this is called hesitation and might be 

profitable in order to avoid the drawbacks of a too greedy 

approach). The stopping rule SR is basically the same 

employed for MBH: we stop if the best member of the 

population does not change for a fixed number MaxNonImp 

of iterations. In the following subsection we discuss our 

choices for the dissimilarity measure and the dcut value. 

 

2.2 Dissimilarity Measure 
Since the dissimilarity measure D is the core component of 

the proposed PBH approach, we will discuss below two 

possible dissimilarity measures for the packing problems. It 

is noted that  the choice of the dcut value, we adopted in 

our PBH algorithm, is very simple: it is equal to half the 

average dissimilarity within the initial randomly generated 

population. 
(a) Distance dissimilarity  (DD) measure 
Let X = {(αi1, αi2)} and Y = {(βi1, βi2)}; i =1,...,n be two 

distinct local minimizers. Let ρh(X) be the distance of circle 

h from the barycenter of the centers of all circles in the 

local minimizer X, i.e., if we move the barycenter to the 

origin  

 
2

2

2

1)( hhh X    

and define ρh(Y ) in a similar way; let δX be the vector 

whose components are the distances ρh(X) ∀ h = 1,. . , n 

ordered in a non-decreasing way, i.e., δX[1] ≤ δX[2] ≤ . . . ≤ 

δX[k] ≤ . . . ≤ δX[n] where δX[k] denotes the k-th component 

of the vector δX. Similarly for the local minimizer Y. Then, 

the distance dissimilarity measure is defined as follows 

    .)(
1






n

k

YX kkX,YD   

(b) Objective-distance dissimilarity measure 

The objective-distance dissimilarity measure is very similar 

to the distance measure dissimilarity but also takes into 

account the difference between objective function values. 

More precisely, we define the objective-distance 

dissimilarity measure as follows  

   ..)()()(
1






n

k

YX kkYfXfX,YD   

The reason for this slight modification is due to free circles. 

When a configuration X has free circles, then we can move 
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them around thus obtaining different configurations with a 

positive distance dissimilarity but a null objective-distance 

one with respect to X. 

 

3. COMPUTATIONAL EXPERIMENT AND 
DISCUSSION 

 
3.1 Experiments on Hard Instances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

In the first experiment we compare the performance of PBH 

and MBH on the Hard Instances regarding MBH approach 

[Jamali,2009,Jamali et al., 2009] where MBH is often failed 

to obtain optimal value. We might think that the difficulty 

of such instances is due to the existence of large number of 

funnel of attraction [Jamali, 2009, Leary, 2000], so that 

many runs of MBH are needed before hitting the (putative) 

global optimum. In this case the multi-path search  

performed by PBH should allow to detect the solution more 

easily, though at a higher computational cost 

(approximately, a single run of PBH has a cost which is Np 

times larger than a single run of MBH, where Np denotes 

the size of the population). We will compare MBH(FJ) 

[Jamali et al. 2009] and PBH(FJ) by setting ∆ = 0.8 and 

MaxNonImp = 500 in both cases, also  setting population 

size, Np = 10 and employing the distance dissimilarity 

(DD) measure in PBH. In order to have a comparable 

overall computation time, we perform 50 runs of MBH and 

5 of PBH. The results are displayed in Table 1, where for 

each instance we report the percentage of successes. 

The results reported in the table suggest that PBH with a 

relatively large Np value is certainly a robust approach, able 

to detect with a high percentage of success (often 100%) 

the solution of the hard instances. On the other hand, we 

should recall the higher computational cost of a PBH run. 

For this reason, we compare the two approaches on the 

basis of the elapsed time per success.  The last two column 

of the table displays the average elapsed time per success of 

the two approaches. We observe that with the remarkable 

exception of the n = 31 case, where PBH strongly 

outperforms MBH, the two approaches are often 

comparable but PBH is, usually, slightly superior but a bit 

more computationally expensive. 

Figure 1 displays the performance of the two approaches in 

some simple instances. It is observed that the performance 

of the both approaches are comparable. But in this 

experiment, the PBH approach is certainly expensive 

regarding computational cost. Note that for the later 

experiment, we consider n= 40, 41, … , 50. For each 

instance, every algorithms run 10 times.  Then the number 

of successes is measured for each approach.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Impact of Population Size in PBH 
In the previous experiments we considered PBH (FJ) with 

Np = 10. Now we would like to investigate more thoroughly 

the impact of the population size in PBH. In these 

experiments we consider PBH (FJ) with population sizes Np 

= {1, 2, 4, 8, 10}. We set MaxNonImp = 100, ∆=0.8, and 

employ the distance dissimilarity measure. The experiments 

are performed on the large instances n= 80. 81.82 . . . 100. 
Note that Np = 1 corresponds to the MBH approach. In 

order to have a comparable computation time, the number 

Table 1: Comparison between MBH and PBH approaches in 

some hard instant. 

 

n Success (in %) Total elapsed Time (sec) 

 PBH MBH PBH MBH 

31 100 2 207.70 1911.75 

68 100 42 2494.46 1223.57 

78 100 42 6185.81 2396.38 

79 60 4 20763.17 2204.00 

80 80 8 10497.63 16707.25 

83 100 42 11842.01 4729.33 

92 60 10 18505.67 17622.40 

95 80 38 13391.50 6235.312 

98 100 82 8287.33 3001.22 

 
 

 

 

Fig 1. Comparison between MBH and PBH regarding in 

simple instances. Here Series 1 indicates MBH approach 

whereas Series 2 indicates PBH approach 

 
 OurBestResults Success (in%) for Np 
 (in PBH) =1 =2 =4 =8 =10 

80 9.968151813 4 8 25 50 100 

81 10.01086424 38 68 83 100 100 

82 10.05082422 58 92 100 100 100 

83 10.11685788 4 4 25 67 60 

84 10.14953087 100 100 100 100 100 

85 10.16311147 100 100 100 100 100 

86 10.29870105 72 100 100 100 100 

87 10.36320851 18 100 100 100 100 

88 10.43233769 74 100 100 100 100 

89 10.50049181 28 68 75 50 100 

90 10.54606918 68 100 100 100 100 

91 10.56677223 64 100 100 100 100 

92 10.68464585 0 0 0 17 0 

93 10.73335260 18 12 25 17 20 

94 10.77803216 36 28 42 50 60 

95 10.84020502 0 40 50 100 60 

96 10.88320276 0 4 0 0 0 

97 10.93859011 14 4 42 67 100 

98 10.97938313 4 100 100 100 100 

99 11.03314115 0 16 50 83 100 

100 11.08214972 18 64 83 100 100 

Total No. of Failure 4 1 2 1 2 

No. of 100% success 2 8 9 12 15 

 

Table 2: Impact of number of population 
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of runs is R = 50, 25, 13, 6, 5 for Np = {1, 2, 4, 8, 10} 

respectively. The results are reported in Table 2 in form of 

percentage of successes.  The results somehow confirms 

those in the previous subsection: indeed, in spite of one or 

two failures, the largest tested Np values, say Np ∈ {8, 10}, 

usually guarantee the highest percentage of successes (very 

often 100% successes), confirming that for large Np values 

PBH turns out to be a quite robust approach. On the other 

hand, in many cases also small Np values (even Np = 1, i.e. 

MBH, although this is also the case with the largest 

number, 4, of failures) quite often guarantee a high 

percentage of successes (at a lower computational cost per 

success with respect to large Np values). Basically, it seems 

that for these problems single or few path searches are often 

already quite efficient and that the benefits coming from the 

greater diversification guaranteed by PBH with larger Np 

values are overridden by the larger computational cost per 

iteration. It is worthwhile to remark that  PBH approach 

able to  obtain two further improvements at n = 96, 99 

compare to  MBH approach as well as literature [by  

Specht,  2009] (see table 2). 
 

3.3 Impact of Different Dissimilarity Measures 
Since we have previously proposed two dissimilarity 

measures, we would like to perform a final experiment to 

compare the performance of PBH(FJ) with the two 

dissimilarity measures Distance Dissimilarity (DD) and 

Objective-Distance Dissimilarity (ODD). For this 

experiments we consider the instances n = 80. . . 100  plus  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
  

 

 

the hard instances with n< 80, set  MaxNonImp (MNI) 

=200,  500 and  ∆ = 0.8.We also consider three population 

sizes Np = {2, 5, 10} and always perform R = 5 runs. The 

results are displayed in Table 3. We notice that the 

differences between the two dissimilarity measures are not 

particularly significant, although, with the only exception of 

Np = 10 and MaxNonImp=200, DD usually has a slightly 

lower number of failures and higher number of 

improvements. As a final remark, we point out that DD and 

ODD are reasonable measures but certainly not the only 

possible ones. A possible aim for future researches is that of 

proposing and testing new measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 3. The Comparison between different dissimilarity measures in PBH approach with Np = 2, 5, 10. Note 

that in this table OurBestResult is denoted as OBR 

  

  
No. of Success for Run=5 & 

MNI=200 No. of Success for Run=5 & MNI=500 

  Np=2 Np=5 Np=10 Np=2 Np=5 Np=10 

  
D

D ODD DD ODD DD ODD DD ODD DD ODD DD ODD 

31 6.291502622 1 0 3 0 5 1 2 0 5 1 5 3 

68 9.229773746 1 1 4 3 4 5 1 2 4 4 5 5 

78 9.857709899 1 1 3 5 2 4 3 3 5 3 3 5 

79 9.905063467 0 0 2 0 2 0 1 1 3 0 3 1 

80 9.968151813 0 0 1 1 2 1 1 1 2 2 3 3 

81 10.01086424 4 4 3 4 5 4 4 4 4 5 5 5 

82 10.05082422 2 3 3 2 4 5 4 5 5 5 5 5 

83 10.11685788 0 0 2 2 0 1 1 1 4 4 3 3 

84 10.14953087 4 5 5 5 5 5 5 5 5 5 5 5 

85 10.16311147 4 3 5 5 5 5 5 4 5 5 5 5 

86 10.29870105 3 4 4 2 4 5 5 5 5 5 5 5 

87 10.36320851 5 5 4 4 5 5 5 5 5 5 5 5 

88 10.43233769 4 5 5 5 5 5 4 5 5 5 5 5 

89 10.50049181 2 3 1 2 3 5 3 4 5 5 4 5 

90 10.54606918 5 4 5 5 5 5 5 4 5 5 5 5 

91 10.56677223 4 4 5 5 5 5 5 4 5 5 5 5 

92 10.68464585 1 0 0 1 0 0 1 1 1 1 0 0 

93 10.73335260 1 0 1 0 1 2 1 1 1 2 2 4 

94 10.77803216 0 0 1 0 0 0 0 0 2 0 0 0 

95 10.84020502 1 0 1 3 2 3 2 1 2 4 5 4 

96 10.88320276 0 0 0  *1 0 1 0 0 1 *1 1 1 

97 10.93859011 0 1 2 1 1 2 1 3 3 5 4 5 

98 10.97938313 2 2 4 3 4 4 4 4 5 5 5 5 

99 11.03314115 *1  *1 1 *3 2 3 1 1 1 *4 4 3 

100 11.08214972 2 2 2 3 2 4 3 4 4 5 5 5 

Total Failure 6 9 2 3 4 5 2 3 0 2 2 2 

Total Improvement 8 7 11 9 9 11 10 10 13 10 11 11 

Tot. Elapsed  Time(hrs) 45 44 62 78 117 107 120 111 132 179 297 260 

 

Fig. 2 an example of improved  packing obtained by PBH 

approach 
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3.4 Comparison with Literatures 
Finally we would like to compare our experimental result 

with the literature, basically with [Specht, 2009] in which 

latest optimal values are updated.  The table 4 shows the 

overall improved solution obtained by our proposed PBH 

approach as well as MBH approach [Jamali et al. 2009]. 

Our approach able to obtain 21 improvements compare to 

the best known values available in [Specht,  2009]. 

Moreover, as mentioned earlier, PBH approach able to 

improve further for number of circles n = 96 and 99.  It is 

also worthwhile to mention here that our improved 

solutions are also now available on the web 

http://www.packomania.com/.  For example figure 2. shows 

one improved solutions for n= 99.  

 

4. CONCLUDING REMARKS 
In this paper we have proposed population  Basin Hopping 

(PBH) approach to solve the problem of equal radii circles 

into a circular container.  There are two tools named 

dissimilarity measures are incorporated in the PBH 

algorithms for the presents of population. Dissimilarity 

measures is introduced in the algorithm in order to  

guarantee the diversification of the search and to avoid the 

greediness which might characterize a single path search. 

Extensive experiments have been performed to investigate 

the impact of the population. Also some experiments have 

been carried out about the impact of the two primarily 

proposed dissimilarity measures. The proposed PBH 

approach is certainly more robust but as the same time 

computationally it is a bit costly with respect to MBH 

(single search base) approach. But in the case of Hard 

Instances PBH approach is much more efficient because of 

existence of large number of funnel of attraction. The 

proposed PBH approach able to improve a large number of 

optimal solutions within the range n =50 to100. 
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Table: Overall improved compare to the Best 

Known Results available in the literature 

 
n Improved Radii BestKnown  Radii 

66 9.0962794269 9.0966658367 

67 9.1689718818 9.1691195883 

70 9.3456531941 9.3460553344 

71 9.4157968969 9.4162065389 

73 9.5403461521 9.5405095046 

74 9.5892327643 9.5892394616 

75 9.6720296319 9.6720296345 

77 9.7989119245 9.7989874974 

78 9.8577098999 9.8577122126 

83 10.1168578751 10.1168644269 

86 10.2987010531 10.2987013109 

87 10.3632085051 10.3632091619 

88 10.4323376927 10.4323421471 

89 10.5004918146 10.5006276715 

92 10.6846458479 10.6846897590 

93 10.7333526003 10.7333861276 

94 10.7780321603 10.7780321638 

96 10.8832027597 10.8836698943 

97 10.9385901101 10.9387916483 

99 11.0331411514 11.0371973885 

100 11.0821497243 11.0825272925 
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