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1. INTRODUCTION 

Flow through pipes or ducts are useful in different 
engineering phenomena. The application of curved pipe 
is found in equipments for example: heat exchangers, 
separators, piping systems, etc. 

When the flow enters into the pipe, the velocities of 
all the particles are same. As the flow enters, the particles 
experience friction with the wall. This was studied by 
Sinha and Aggarwal[1]. They studied flow development 
from the entry to the fully developed region. They 
followed Van Dyke’s approach of matched asymptotic 
expansions [2] and analyzed the problem considering 
uniform flow at the entry. The development of the flow is 
studied by considering three regions: (1) an inviscid core, 
(2) the boundary layer and (3) the down stream region. 
The boundary layer was found to grow until it becomes 
equal to the radius of the pipe. Also the velocity increases 
more rapidly during the initial development in 
comparison to the flow in the downstream region. 

To study entry flow in a pipe Briley [3] used 
alternating direction implicit method to integrate the 
momentum equation without streamwise diffusion terms. 
Morihar and Cheng [4] presented a finite-difference 
solution of the complete Navier-Stokes equations, for 
entry flow in a two dimensional channel. They used 
Stokes flow(Re=0) as initial solution of the 
Navier-Stokes equations, then generated the solution for 
larger Reynolds number by iterating on the 
quasi-linearized Navier-stokes equations. 

In case of curved pipe, the particles experience 
centrifugal force in addition to frictional force. Singh [5] 
obtained a solution of developing flow in a curved 
circular pipe by applying perturbation technique, where 
boundary layer method was assumed for the flow to be 
consisted of an inviscid core surrounded by secondary 

flow boundary layer. As the flow rate increases the 
secondary flow layer becomes thinner near the outer 
bend and thicker near the inner bend. The boundary layer 
near the inner bend eventually separate and interacts with 
the inviscid core. 

Later Singh et al [6] extended this problem to a matter 
of more physiological importance. Here they considered 

an entrance profile of the form ( )
1 cos

Q tw
δ α

=
+

, which is 

the case of blood being pumped from the left ventricle 
into the ascending aorta. A boundary-layer analysis is 
applied to determine the effects of curvature and an 
adverse pressure gradient on the wall shear. They showed 
the development of negative wall shear and backflow 
near the wall during the decelerating phase of the cycle as 
the boundary layer grows. The analysis also reveals how 
the increasing effect of the secondary flow draws off 
slower moving fluid azimuthally from the outer bend to 
the inner bend; this induces a cross-flow of faster moving 
fluid from the inner bend to the outer bend which results 
in a thinning of the boundary layer at the outer bend and a 
thickening at the inner bend. This implies an increased 
wall shear at the outer bend compared with that at the 
inner bend as the flow develops further downstream; this 
is in contrast with the initial stages of the motion near the 
entrance where the higher wall shear occurs at the inner 
bend owing to the external flow and to geometric factors. 
The analysis shows that the displacement effect of the 
boundary layer on the core is not significant because the 
boundary layer remains thin, about one-tenth of the tube 
diameter. 

Soh and Berger[7] solved elliptic Navier-Stokes 
equation for entrance flow into a curved pipe using the 
artificial compressibility technique. Calculations were 
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carried out for curvature ratios 1
7

, 1
20

 and for Dean 

number 108.2 to 680.3. Secondary flow separation was 
observed near the inner wall in the developing region of 
the curved pipe. The separation and the magnitude of the 
secondary flow are found to be extremely influenced by 
curvature ratio. 

Recently Masud and Alam [8] studied the effect of 
curvature ratio on the entry flow. But that was for low 
Reynolds number. In this paper our area of interest is the 
flow in the entry region under high Reynolds number. 
 

2. MATHEMATICAL MODEL 
The physical construction of the problem has been 

shown in Fig. 1. The toroidal coordinate system 
( ), ,r sθ′ ′  considered for the present study. The radius of 
the pipe is R and the radius of the uniform cross-section 
is a, the velocity components along , ,r sθ′ ′  directions 
are , ,u v w′ ′ ′ respectively, p′  is the pressure, ρ  is the 
constant density of the fluid and υ  is the kinematic 
viscosity of the fluid. 

 
Introducing the non-dimensional variables, 

2, , , ,u v w p ru v w p r
W W W aWρ
′ ′ ′ ′ ′

= = = = =
o o o o

 we get the 

following flow governing equations. 
Non-dimensional continuity equation: 
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Non-dimensional radial momentum equation: 

( ) ( ) ( )2 2

2

2

2

2

1

1 1sin

1 2

2cos sin cos sin

e

ruw r u uv v
r s r

p urw r
r R r r r

u r u v u
r s s r

v w u v
r s

ω ω ω
ω θ

δ θ ω
ω

ω
θ θ ω θ
δ δθ θ θ θ
ω δω

∂ ∂ ∂⎡ + + −⎢∂ ∂ ∂⎣
⎡ ⎧∂ ∂ ∂⎛ ⎞⎤− = − + ⎢ ⎨ ⎜ ⎟⎦ ∂ ∂ ∂⎝ ⎠⎢ ⎩⎣
⎫∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − +⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

⎤∂⎛ ⎞− − + + ⎥⎜ ⎟∂⎝ ⎠ ⎥⎦  
Non-dimensional circumferential momentum 

equation: 
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Non-dimensional axial momentum equation: 
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where, e
aWR
υ

= o , 1 sinrω δ θ= +  and 
a
R

δ = . 

 
3. BOUNDARY CONDITIONS 

The fluid flow boundary is considered to be consisted 
of three regions: the inlet cross-section, the rigid wall and 
the cross-section far downstream where the flow is 
assumed to be fully developed. 

The initial conditions at the inlet is considered as, 

( ) 1, ,0
1 sin

w r
r

θ
δ θ

=
+

, ( ) ( ), , 0 , , 0 0u r v rθ θ= =   

and 
( )

1
22 1 sin

p
rδ θ

= −
+

.  

Due to the no-slip condition, all the velocity 
components vanish at the rigid boundary, i.e., 
( ) ( ) ( )1, , 1, , 1, , 0u s v s w sθ θ θ= = = . 
At far down stream when the flow gets fully developed, 

0u v w
s s s
∂ ∂ ∂

= = =
∂ ∂ ∂

. 

 
 

Fig. 1: Toroidal coordinate system for a curved 
pipe with circular cross-section 
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4. FINITE DIFFERENCE FORMULATIONS 
To rewrite the momentum equations (1-3) and 4 into a 

practical finite-difference scheme of computation , the 
grid arrangement shown in Fig. 2 and Fig. 3 has been 
chosen.  

 

 
 

 
In radial direction 20 intermediate grid points have 

been considered and in circumferential and axial 
direction 36 intermediate grid points have been 
considered. The grid has been arranged in such a way 
that pressure is defined at the centre of a cell and wvu ,,  
are defined at different positions on the pressure cell 
boundaries. Then the momentum equations in 

wvu ,, -directions reduces to, 
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respectively. And the continuity equation reduces to, 
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The accuracy is assured by taking 610−<DIF , where 
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6. RESULTS AND DISCUSSION 

     Calculations have been carried out for Reynolds 
Number Re= 900 and 1100 at curvature δ = 0.1 to 
understand the effect of high Reynolds number on flow 
in the entry region of a curved pipe. The problem has 
been solved using finite difference technique. 
 The results have been shown through vector plots of 
the secondary flow and contour plots of the axial flow. 
Also the axial velocity profile on the plane of symmetry 
has been shown by line chart. In all these cases, inner 
side is to the left and outer side is to the right. The arrows 
in the vector plots denote the direction and magnitude of 
the secondary velocity. In case of contour plots the 
distance between two consecutive contours is adjusted 
automatically and kept invariant. 
 
6.1 Secondary flow development 
The vector plots of the secondary flow have been shown 
in Fig. 4 for Reynolds number 900 and 1100 respectively. 
Two vortex secondary flow has been found which is 
symmetric about the horizontal line passing through the 
centre of cross-section. The secondary flow is set up just 
after entering the inlet due to the effect of centrifugal 
force. Circumferential velocity is greater for the particles 
near the upper and lower boundary. Also the velocity of 
the particles at the centre of cross-section is radially 
outward for the effect of centrifugal force. As the flow 
goes downstream the secondary velocity of the particles  

Fig. 3: Grid system in the horizontal plane 
passing through the axis of the pipe. 

Fig. 2: Grid system in the cross-section. 
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near the centre of the cross-section increase in the 
direction of the centrifugal force and the flow in the core 
region moves radially outward along the horizontal plane 
passing through the centre of the cross-section. At the 
same time, the particles near the upper and lower 
boundary experience high circumferential velocity in the 
direction opposite to the velocity of the particles at the 
core region. As a result, two vortex secondary flow is set 
up. The secondary velocity of the particles in the inner 
half is higher than the velocity of the particles at the 
centre and outer half of the cross-section. As a result, two 
vortices are set up in the inner half. 

 
6.2 Axial flow development 
The contour plots of the axial velocity has been shown in 
Fig. 5 for Reynolds number 900 and 1100 respectively. 
The axial velocity profile of the particles on the 
horizontal plane passing through the center of 
cross-section have been shown in Figs. 6, 7. The axial 
flow is symmetric about the plane passing through the 
centre of cross-section. As the flow enters the pipe 
boundary layer begins to develop. Boundary layer near 
the inner wall develops faster than that at the outer wall. 
Just after the entrance, the axial velocity of the particles 
is higher  
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Fig. 5: Contour plots of the axial velocity 
for 900eR =  and 1100 at curvature 

0.1δ = .
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Fig. 4: Vector plots of the secondary flow for 
900eR =  and 1100 at curvature 0.1δ = . 
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in the inner half. But as the flow proceed downstream the 
particles in outer half attains higher velocity. Two step 
plateau like velocity profile is found at the middle of the 
pipe. But finally single picked axial velocity is found. 
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8. NOMENCLATURE 

Symbol Meaning 
u,v,w Dimensionless velocity 

components along radial, 
circumferential and axial direction 
respectively 

Re Reynold’s Number 
Tr Taylor Number 
δ  Dimensionless curvature 
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Fig. 7: Axial Velocity profile on the horizontal plane 
passing through the center of cross-section for 

1100, 0.10eR δ= = . 
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Fig. 6: Axial Velocity profile on the horizontal plane 
passing through the center of cross-section for 

900, 0.10eR δ= = . 
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