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1. INTRODUCTION 

 

Investigation of mixed convection is a significant 

topic in many technological processes, such as the design 

of solar collectors, thermal design of buildings, air 

conditioning and, recently the cooling of electronic 

circuit boards. A literature review on the subject shows 

that a sizeable number of authors have considered mixed 

convection in ventilated enclosures. Convection in 

enclosures containing a circular hollow cylinder has 

gained recent research significance as a means of heat 

transfer enhancement. One of the systematic numerical 

investigations of this problem was conducted by House 

et al. [1], the authors considered natural convection in a 

vertical square cavity with heat conducting body, placed 

at center in order to investigate the effect of  heat 

conducting body on the heat transfer process in the cavity. 

They found that the heat transfer across the enclosure 

enhanced by a body with thermal conductivity ratio less 

than unity. Braga and Lemos [2] numerically studied 

steady laminar natural convection within a square cavity 

filled with a fixed amount of conducting solid material 

consisting of either circular or square obstacles. They 

showed that the average Nusselt number for cylindrical 

rods is slightly lower than those for square rods. Kumar 

and Dalal [3] studied natural convection around a tilled 

heated square cylinder kept in an enclosure in the range 

of 10
3
 ≤ Ra ≤ 10

6
. They reported detailed flow and heat 

transfer features for two different thermal boundary 

conditions and found that the uniform wall temperature 

heating is quantitatively different from the uniform wall 

heat flux heating. Combined free and forced convection 

in a square enclosure with heat conducting body and a 

finite-size heat source was simulated numerically by Hsu 

and How [4]. They concluded that both the heat transfer 

coefficient and the dimensionless temperature in the 

body center strongly depend on the configurations of the 

system. Rahman et al. [5] studied on mixed convection in 

a square cavity with a heat conducting square cylinder at 

different locations. Rahman et al. [6] analyzed mixed 

convection in a rectangular cavity with a heat conducting 

horizontal circular cylinder by using finite element 

method. Recently, Mamum et al. [7] made a numerical 

analysis on the effect of a heated hollow cylinder on 

mixed convection in a ventilated cavity. They showed 

that the flows and thermal fields have strong dependence 

in diameter of the hollow cylinder in the square cavity. 

 

There has been a little study on mixed convection in 

an obstructed vented cavity. In the present revision, a 

numerical simulation of flow and temperature fields in a 

square cavity with a heated hollow cylinder is carried out. 

Here, the flow and thermal characteristics of the system 

are analyzed by observing variations in streamlines and 

isotherms for different locations of the cylinder in the 

cavity at Ri = 0.0 and Ri = 1.0. We also have investigated 

the heat transfer characteristics by calculating the 

average Nusselt number on the hot surface and average 

fluid temperature in the cavity. 
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Fig.1. Schematic diagram of the problem 

considered and coordinate system. 
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2. PROBLEM STATEMENT 

 

2.1 PHYSICAL MODEL 

The schematic of the system considered under the 

study is sketched in Fig. 1. A heated hollow cylinder of 

fixed diameter d and thermal conductivity of ks is placed 

at the various position in a square cavity with length of 

wall, L. The sidewalls of the cavity are assumed to be 

adiabatic. It is assumed that the incoming flow is at a 

uniform velocity, ui and at the ambient temperature, Ti. 

The inflow opening is placed at the bottom of the left 

vertical wall, whereas the out flow opening is positioned 

at the top of the opposite side wall and the size of the inlet 

port is the same size as the exit port which is equal to one 

tenth of the cavity length (w = 0.1L). The outgoing flow 

is assumed to have zero diffusion flux for all variables 

i.e. convective boundary conditions (CBC). All solid 

boundaries are assumed to be rigid no-slip walls. 

 

2.2 MATHEMATICAL MODEL 

The governing equations describing the problem 

under consideration are based on the laws of mass, 

momentum and energy. All the thermo physical 

properties of fluids are assumed to be constant except the 

density variation in body force term of the v-momentum 

equation according to the Boussinesq approximation. 

The flow within the cavity is assumed to be steady, 

laminar and two-dimensional incompressible with 

negligible the radiation effects, viscous dissipation and 

pressure work. Taking into consideration the mentioned 

assumptions, the governing equations can be written in 

dimensionless form as follows: 
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For solid cylinder, the energy equation is 
2 2
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In writing the equations (1)-(5), the following definitions 

of dimensionless variables are used 
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where X and Y are the coordinates varying along 

horizontal and vertical directions respectively, U and V 

are the velocity components in the X and Y directions 

respectively, θ is the dimensionless temperature and P is 

the dimensionless pressure. 

The non-dimensional parameters that appear in the 

formulation are the Reynolds number ( iRe u L  ), 

Grashof number (
3 2Gr g TL   ), Prandtl 

number ( Pr   ), and Richardson number 

( 2Ri Gr Re ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3  BOUNDARY CONDITIONS  

The dimensionless form of the boundary 

conditions for the present problem are specified as 

follows: 

At the inlet: 1, 0, 0.5U V      

at the outlet: Convective boundary condition 0P  , 

at all solid boundaries: 0,0  VU , 

at the cavity walls: 0.0
N





 , 

at the inner surface of the cylinder: 1.0   and 

at the outer surface of the cylinder: 

fluid solid

sK
N N

    
   

    
 

where N is the non-dimensional distances either along X 

or Y direction acting normal to the surface and K 

 s fk k  is the solid fluid thermal conductivity 

ratio. 

The average Nusselt number at the heated surface is 

calculated as  

 

0

1 hL

h

Nu dY
L X


 


                                   (6) 

and the average temperature of the fluid in the cavity is 

defined by /av dV V                                      (7) 
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Fig. 2. Streamlines for (a) Ri = 0 and  (b) Ri = 1 at 

selected values of cylinder location. 

where Lh is the area of the heated surface and V is the 

cavity volume . 

The non-dimensional stream function is defined as  

,U V
Y X

  
  
 

.                 (8) 

 

 

3.  NUMERICAL EXPLANATION 

 

The Galerkin finite element formulation is used to 

solve the governing equations along with boundary 

conditions. The continuum domain is divided into a set of 

non-overlapping regions called elements. In addition, to 

discretize the physical domain, six node triangular 

elements with quadratic interpolation functions for 

velocity as well as temperature and linear interpolation 

functions for pressure are applied. Moreover, 

interpolation functions in terms of local normalized 

elements are employed to approximate the dependent 

variables within each element. Substitution of the 

obtained approximations into the system of the 

governing equations and boundary conditions yields a 

residual for each of the conservation equation. These 

residuals are reduced to zero in a weighted sense over 

each element volume using the Galerkin method. More 

details are available in Rahman et al. [6] and Mamun et 

al. [7]. 

 

4.  RESULTS AND DISCUSSION 

 

Investigation of the present study is the effect of a 

heated hollow cylinder on mixed convection flow in a 

ventilated square cavity are examined for Ri = 0 and Ri = 

1, which influence the flow  in  thermal field and 

temperature distribution inside the cavity. Air was used 

as working fluid inside the cavity with Pr = 0.71 and Re = 

100. We plot of streamlines and isothermal lines in Fig. 2 

and Fig. 3 respectively in the different locations of the 

heated hollow cylinder of the dependence of flow and 

thermal field, while Ha = 10.0, Q = 1.0  are kept fixed. 

 

It is seen that in the Fig. 2(a) for Ri = 0 the flow 

pattern inside the cavity are almost parallel to the 

south-east to north-west due to the dominating influence 

of the conduction and mixed convection heat transfer. It 

is noticed that the higher values of streamlines shown to 

be circular rounding the heated hollow cylinder and we 

observed that the rounding streamlines more 

concentrated at A = (0.25, 0.5) and C = (0.5, 0.75) than B 

= (0.5, 0.25) and D = (0.75, 0.5). In Fig. 2(b) for Ri = 1, 

the streamlines seen the similar feature except at D = 

(0.75, 0.5). It is interesting that the streamlines for Ri = 0 

and Ri = 1create a vacuity under or around the heated 

hollow cylinder. 

 

From Fig. 3(a), it is observed that the isotherm 

lines are parallel especially the thermal lines are 

vertically parallel and generate the same lines at the 

locations B = (0.5, 0.25) and D = (0.75, 0.5) and 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

horizontally parallel for the locations A = (0.25, 0.5) and 

C = (0.5, 0.75). The higher values of thermal lines seen 

that it is circular rounding the heated hollow cylinder. It 

may noticed that the thermal lines are more concentrate 

around the heated hollow heated cylinder in Fig. 3(b) 

when Ri = 1.0 than  Fig. 3(a) when Ri = 0.0 except at the 

place A = (0.25, 0.5).  

 

In Fig. 4 shows that the variation of  the Average Nusselt 

number (Nu) at the heated surface for different places of 

the hollow cylinder has presented here. For each position 

of the heated hollow cylinder, the Nu – Ri profile is 

straight line (N - shape) shows two distinct zones 

depending on Richardson number. 
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Fig. 3. Isotherms for (a) Ri = 0 and  

(b) Ri = 1 at selected values of cylinder location. 

(a) 

Fig. 4. (a) Average Nusselt number, (b) average fluid 

temperature in the cavity versus cylinder locations. 
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It is obvious from the Fig. 4(a) that when Nu = 1.3 

then Ri = 0.0 and Ri = 1.0 two lines coincide, otherwise 

two lines almost similar.  

Fig. 4(b) shows the average fluid temperature   in 

the square cavity for different position of the heated 

hollow cylinder. This is conspicuous that when the 

hollow cylinder locations at A and D then Ri = 0.0 and Ri 

= 1.0 are two lines coincide where at first two lines are 

gradually increase from locations A to B but suddenly 

decreases B to C and ultimate meet at D. 

     The Figures 5 (a) and 5 (b) are represent the drag force 

(  ) and temperature gradient (  ) in the domain 

versus cylinder locations respectively. From Fig. 5 (a), it 

is observed that   is more monotonically increases Ri = 

1.0 than Ri = 0.0.The two are gradually decreasing from 

the location B and finally meet these at D. 
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Fig. 5. (a) Drag force, and (d) temperature gradient 

 in the domain versus cylinder locations. 

 

 

 

It is noticed that the temperature gradient (  ) are 

fluctuated variation with Cylinder locations. Moreover, 

Fig. 4 and Fig. 5, we seen that the variation of lines are 

varies with average Nusselt number (Nu), average fluid 

temperature (  ), drag force (  ), and temperature 

gradient (  ) in square cavity with cylinder locations. 

 

5. CONCLUSION 

The results of the problem presented in this 

simulation were those of the numerical investigation of 

flow and thermal fields, and heat transfer activities by 

mixed convection in a square cavity with a heated hollow 

circular cylinder which placed different positions in the 

square cavity.   This is manifest that the flows and 

thermal fields have strong dependence on the placement 

of the heated hollow cylinder in the square cavity, but 

from the Figures we seen that the stream and isothermal 

lines are not significant change at Ri = 0.0 and Ri = 1.0.   
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8. NOMENCLATURE 

 

Symbol Meaning Unit 

d 

 

 

g 

 

h 

 

 

kf 

 

ks 

 

 

L 

 

Lh  

 

p 

 

T 

∆T 

 

u, v 

 

U, V 

 

 

V  

w 

 

x, y 

α 

 

β 

 
θ 

 

ρ 

dimensional cylinder 

diameter  

gravitational acceleration  

 

convective heat transfer 

coefficient  

thermal conductivity of 

fluid  

thermal conductivity of the 

solid 

length of the cavity  

 

length of the of the heated 

surface 

dimensional pressure  

dimensional temperature  

temperature difference  

dimensional velocity 

components  

dimensionless velocity 

components 

Cavity volume  

height of the opening  

 

Cartesian coordinantes  

thermal diffusivity  

thermal expansion coefficient  

kinematic viscosity  

non-dimensional 

temperature 

density of the fluid  

 

(m) 

 

(ms-2) 

 

 

(Wm–2K–1) 

 

(Wm-1K-1) 

 

 

(Wm-1K-1) 

 

 

(m) 

 

(m2) 

 

(Nm-2) 

(K) 

 

(K) 

 

(ms-1) 

 

 

 

(m3) 

(m) 

 

(m) 

 

(m2s-1) 

(K-1) 

 

(m2s-1) 

(kgm-3) 

   

 


