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1. INTRODUCTION 
     Improvement of aerodynamic performance is critical 

in a high-speed sport such as swimming. Swimming 

became one of the major athletic sports and top 10 new 

sports technologies. The competitive swimming event 

consists of different distances from 50 m to 1500 m. 

These events required excessive energy and speed to 

achieve best recorded within short wining time margins. 

Prior studies estimate over 90% of the swimmer’s power 

output is spent overcoming hydrodynamic resistances [1, 

2]. These resistive forces were essentially behind the 

generation of drag during swimming. Reducing the 

hydrodynamic resistance can significantly improve 

overall swimming performance [3]. The hydrodynamic 

resistance can generally be divided into two categories: 

(i) passive resistance and (ii) active resistance. The 

passive resistance is generally measured by towing the 

swimmer without any physical movements [1, 4, 5]. The 

passive drag is directly influenced by the body shape and 

outfits. The active resistance is measured for the 

swimmer during swimming with the physical movement. 

The active drag can be found once the propulsive force is 

computed. 

     Vorontsov et al. [1] and Toussaint et al. [8, 9] have 

suggested that the overall drag affecting a swimmer and 

could be categorized as: (i) form drag, (ii) wave drag, and 

(iii) skin friction drag. Form drag is the resistance to 

motion due to the shape of the body, the wave drag is 

associated with the work required to generate waves and 

skin friction is the resistance to motion due to the surface 

area of the body. The form and skin friction drag depend 

on the Reynolds number (Re) while the wave drag 

depends on the Froude number (Fr):  
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     In competitive swimming, hundredths of a second can 

separate gold from bronze. At present, most competitive 

swimmers attempt to take advantage of various means 

including swimsuits to enhance their performance. The 

modern swimsuits have evolved through a series of style 

changes and designs over the decades to its current nice 

aesthetic look and with possible drag reduction 

advantages [10, 15]. More recently, several commercial 

swimsuit manufacturers have claimed and 

counterclaimed about their swimsuits performance by 

reducing hydrodynamic resistance and enhancing 

buoyancy. Since the Beijing Olympic Games 2008, 

almost all major manufacturers introduced full-body 

swimsuits made of semi and full polyurethane combined 

with woven Lycra and Nylon. Most publicised swimsuits 

of these categories are Speedo, TYR, Arena and Diana. 

Notably, out of 32 swimming events (16 for male and 16 

for female), 21 world records have been broken in last 

Beijing Olympic Games. The manufacturers claimed 

these suits have features such as ultra-light weight, water 

repellence, muscles oscillation and skin vibration 

reduction by compressing the body.  
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     Strangwood et al. [11], Chowdhury et al. [12, 13] and 

Moria et al. [10, 15] revealed that technological 

innovation in both design and materials has played a 

crucial role in sport achieving its current standing in both 

absolute performance and its aesthetics. Currently, 

swimsuits have been aggressively marketed primarily as 

a means for reducing the skin friction component of the 

total drag, thereby conferring a competitive advantage 

over other swimmers. However, it is difficult to find 

independent research in the open literature that supports 

these claims and counter claims [2]. In order to 

understand the aerodynamic contribution of swimsuits, 

the current study was undertaken in the School of 

Aerospace, Mechanical and Manufacturing Engineering, 

RMIT University. 

 

2. EXPERIMENTAL PROCEDURE 
2.1 Macro Scale Testing 
     The human body is not a streamlined shape and 

caused a lot of flow separations around it. The drag 

generated by the body (pressure, wave & friction drag) is 

significantly larger than the drag generated by swimmers 

outfits (textile). The drag generated by the swimsuit must 

be evaluated in isolation and in macro scale testing, see 

Figure 1. A standard cylinder methodology was used to 

measure the drag generated by swimsuit materials. Based 

on the macro scale test, an engineered swimsuit can be 

developed to gain aerodynamic advantages. 

 

 

 
Fig.1: Schematic of cylinder methodology [10] 

 
2.2 Experimental Procedure 
     With a view to obtain aerodynamic properties 

experimentally for a commercially available swimsuit 

(Speedo FS-I) made of two materials composition, 110 

mm and 90 mm diameter cylinders were manufactured. 

In order to test the fabric without applying any tension 

(un-stretched), the 90 mm diameter cylinder would be 

used. On the other hand, the 110 mm diameter cylinder 

would be used to test the fabric with some measured 

tension (stretched condition). Both cylinders were made 

of PVC material and used some filler to make it 

structurally rigid. Both cylinders were vertically 

supported on a six component sensor (type JR-3) that had 

a sensitivity of 0.05% over a range of 0 to 200 N. The 

aerodynamic forces and their moments were measured 

for a range of Re numbers based on cylinder diameter 

and varied wind tunnel air speeds (from 10 km/h to 130 

km/h with an increment of 10 km/h). Each test was 

conducted as a function of swimsuit’s seam positions and 

varied fabric tension (see Figure 2). 

 
Fig. 2: Seam orientation at different angles facing the 

wind during the test (Plan view) 
 

2.3 Experimental Facilities 
     The RMIT Industrial Wind Tunnel was used to 

measure the aerodynamic properties of swimsuit fabrics. 

The tunnel is a closed return circuit wind tunnel with a 

turntable to simulate the cross wind effects. The 

maximum speed of the tunnel is approximately 150 km/h. 

The rectangular test section dimensions are 3 meters 

wide, 2 meters high and 9 meters long, and the tunnel’s 

cross sectional area is 6 square meters. A plan view of the 

tunnel is shown in Figure 3. The tunnel was calibrated 

before and after conducting the experiments and air 

speeds inside the wind tunnel were measured with a 

modified National Physical Laboratory (NPL) ellipsoidal 

head Pitot-Static tube (located at the entry of the test 

section) which was connected through flexible tubing to 

a Baratron pressure sensor made by MKS Instruments, 

USA. The cylinder was connected through a mounting 

sting with the JR-3 multi-axis load cell, also commonly 

known as a 6 degree-of-freedom force-torque sensor 

made by JR-3, Inc., Woodland, USA. The sensor was 

used to measure all three forces (drag, lift and side 

forces) and three moments (yaw, pitch and roll moments) 

at a time. Each set of data was recorded for 20 seconds 

time average with a frequency of 20 Hz ensuring 

electrical interference is minimised. Multiple data sets 

were collected at each speed tested and the results were 

averaged for minimising the further possible errors in the 

experimental raw data. Further details about the wind 

tunnel can be found in Alam et al. [16]. 
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Fig. 3: A plan view of RMIT Industrial Wind Tunnel [16] 

     Both bare cylinders were tested initially in order to 

benchmark the aerodynamic performance as shown in 

Figure 4 (a & b). Then the two cylinders were wrapped 

with swimsuit fabric to measure their aerodynamic 

forces and moments. The end effects of the bare cylinder 

were also considered [12]. 
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(a) 110 mm diameter and 220 mm length for stretched 

fabric 

 
(b) 90 mm diameter and 220 mm length for un-stretched 

fabric 

Fig.4: Experimental bare cylinders set up in RMIT 

Industrial Wind Tunnel 
      

2.4 Swimsuit Materials 
     A brand new Speedo Fastskin-I (FS-I) swimsuit 

material has been selected for this study as it was 

officially used in the 2000 Sydney Olympic Games. It is 

made of 74% polyester and 26% Elastane (Lycra). The 

seam was made using four-way flat lock method which 

has 22 stitches per inch. Figure 5 (a & b) shows the inner 

and outer seam for stretched and un-stretched fabric 

material. Also, Figure 6 (a to d) shows the four seam 

positions (stretched and un-stretched fabric) used in this 

study. 
 

 
(a) Outer seam joint (left) and inner seam joint (right) for 

the stretched fabric 

 

(b) Outer seam joint (left) and inner seam joint (right) for 

the un-stretched fabric 

Fig. 5: Combined optical images of the Speedo FS-I 

seam joint for stretched and un-stretched fabric material 
 

 

Front View Left View Right View Back View 

(a) Position 1 for stretched fabric 

 

Front View Left View Right View Back View 

(b) Position 2 for stretched fabric 

 

Front View Left View Right View Back View 

(c) Position 3 for un-stretched fabric 

 

Front View Left View Right View Back View 

(d) Position 4 for un-stretched fabric 

Fig.6: All four seam positions 
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3. RESULTS AND DISCUSSION 
3.1 Microstructure Analysis 
     As mentioned earlier, the purpose of using two 

different sizes of the cylinder is to measure the effect of 

aerodynamic properties in stretched and un-stretched 

fabric material. Figure 7 (a & b) shows optical images for 

the un-stretched material of Speedo FS-I (inner and outer 

surface) while Figure 8 (a & b) shows the stretched fabric 

material. The optical images did not show a notable 

difference in the surface profile. Therefore, an Electron 

microscope was used to illustrate the swimsuit material 

features at 3000 times magnification as shown in Figure 

9. 
 

 

(a) Outer surface material 

 

(a) Inner surface material 

Fig. 7: Optical images of un-stretched Speedo FS-I fabric 

material 

 

(a) Outer surface material 

 

(a) Inner surface material 

Fig. 8: Optical images of stretched Speedo FS-I fabric 

material 

 

 

Fig. 9: Surface profile of Speedo FS-I swimsuit material 

using an Electron Microscope (3000X magnification) 

 

3.2 Aerodynamic Analysis 
     In this paper, only drag force (D) data, and its 

dimensionless quantity drag coefficient (CD), are 

presented. The CD was calculated by using the following 

formula: 

AV

D
CD 2

2
1 ρ

=   (3) 

     The drag force (D) versus wind speed (V) and the drag 

coefficient (CD) as a function of Re for a range of seam 

positions for the tested Speedo FS-I swimsuit material 

are presented in Figures 10 to 15. In order to compare the 

results of swimsuit (stretched and un-stretched material), 

the drag force (D) and CD for both bare cylinders were 

also shown in all figures. Figure 10 shows that the drag 

for the bare cylinder (smooth) which is continuously 

increasing without any abrupt changes as expected. The 

CD variation with Re as shown in Figure 11 clearly 

indicates that swimsuit fabric material has undergone a 

gradual drag crisis (transition effect from laminar to 

turbulent flow regimes at a speed range of 20 to 50 km/h) 

for the position 2. The position 1 enhances the favourable 

pressure gradient more and delays the separation by 
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increasing the turbulent boundary layer compared to 

other seam positions. In general, the rougher surface of 

the swimsuits extends the turbulent boundary layer by 

reducing the length of laminar boundary layer and 

ultimately delays the flow separation in comparison with 

the smooth surface of bare cylinder. Furthermore, 

position 2 is not favourable for the drag reduction as it 

triggers an early flow separation compared to the seams 

position 1. 
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Fig. 10: Drag variation with speeds (stretched fabric 

material) 
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Fig. 11: CD variation with Re (stretched fabric material) 

      

     The drag and the CD values for the un-stretched 

Speedo FS-I swimsuit material are shown in Figures 12 

and 13. The seams at position 3 have the higher drag and 

CD values compared to the bare cylinder while the other 

tested case showed a similar trend of the bare cylinder. 

Also, there is no clearly noted transitional effect on the 

drag and CD for the both cases (position 3 & 4). 
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Fig. 12: Drag variation with speeds (un-stretched fabric 

material) 
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Fig. 13: CD variation with Re (un-stretched fabric) 
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Fig.14: Comparison of Drag variation with Speeds 

(stretched and un-stretched fabric material) 
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Fig.15 Comparison of CD variation with Re (stretched 

and un-stretched fabric material) 

      

     A comparison of drag and CD values for the stretched 

and un-stretched Speedo FS-I swimsuit material is 

shown in Figures 14 and 15 respectively. It is evident that 

the stretched material has the lowest value of drag 

coefficient after transition to the un-stretched material. 

Although un-stretched material has no transitional effect, 

it has relatively higher CD values. This condition of 

un-stretched material does not provide any aerodynamic 

advantages. Both fabric materials (stretched and 

un-stretched) have complicated effects on aerodynamic 

properties. It is not clear what contribution was made by 

the fabric surface (stretched and un-stretched) or the 

complexity made by the seam orientations. However, it is 

expected that all these variables (stretched and 

un-stretched surface morphology and seam orientation) 
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have flow transitional effect compared to the bare 

cylinder surface. The effects of surface morphology 

alone on the transitional effect can be found in by Moria 

et al. [16]. 

 
 

4. CONCLUSIONS 
     The following concluding remarks have been drawn 

based on the experimental study presented here: 
 

• The surface structure (roughness and seam) of the 

swimsuit has significant effect on the aerodynamic 

drag. 
 

• The stretched Speedo FS-I fabric material has relative 

advantages due to lower CD values at speeds below 

50km/h wind speed or equivalent speeds in water. 
 

• The CD value of un-stretched Speedo FS-I fabric 

material is independent of Reynolds number as it did 

not undergo any flow transition. 
 

• The flow transition can be manipulated in order to 

gain aerodynamic/hydrodynamic advantages by 

using engineered fabric material and seam positions. 
 

• Although not identified individually, the combined 

effect of surface roughness and seam orientation on 

aerodynamic behavior is well noted. 
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7. NOMENCLATURE 

Symbol Meaning Unit 

CD Drag Coefficient  

D Drag Force (N) 

ρ Fluid (air/water) Density (kg/m
3
) 

V Wind Speed (m/s) 

A Projected Frontal Area 

of Cylinder 

(m
2
) 

d Diameter of Cylinder (m) 

µ Dynamic Viscosity (N.s/m
2
) 

 


